

Performance-Driven Façade Configuration: *Parametric Thinking* for Integrated Building Practice

By: Zaki Mallasi (PhD, LEED ® BD+C)

Architecture & Design Days, 10 -11 October, 2012 AIA Middle East - Jeddah

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

Effat University / iconviz © 2012

WWW.ICONVIZ.COM

PRESENTATION GOALS

This lecture demonstrates how to use Analytical Design
 Data to drive design of the building envelope using Design
 Computation processes and combined with custom-built 3D
 Parametric Objects.

Parameters are referred to as `constraints'. Examples Parameters: length, rotation angle, and number.

Typical design data for a façade vary from one designer to another, examples are: spatial arrangements, **penalization pattern**, solar exposure, **visibility control** (privacy), and aesthetic preference.

LEARNING OBJECTIVES

□ Discover **possibilities** and **opportunities** from utilizing **BIM** within an integrated design framework.

□ Developed unique and **innovative design thinking process** using digital design tools.

□ Bringing awareness to advanced computational and **design optimization capabilities in Revit**.

□ Share the process on how to transfer the **BIM model** data to digital fabrication and track cost.

PARAMETRICS PERFORMATIVE DESIGN AUTOMATION ANALYSIS FAÇADE ENVELOPE PROCESS METHODOLOGY TECHNIQUE SHADING SIMULATION OPTIMIZATION ENERGY PERFORMANCE HEAT GAIN ORIENTATION VIEWS ORIENTATION PROCESS EFFICENT AUTOMATED SYSTEM FOR DESIGNING MEASURABLE EARLY STAGE ASSISTANCE/INFORMING STRATEGIES

RESULTS SCORECARD RECORDS PROGRESS Validates design

... SOME PRACTICAL NOTES

□ This lecture is designed **to inspire**.

 Project case study and examples in this lecture are very **specific to designing the exterior building envelope**.

□ If you didn't learn anything from me, then I must **learn something from you**.

□ Please make this lecture an interactive session by **asking questions** and **share your thoughts**.

PARAMETRICS PERFORMATIVE DESIGN AUTOMATION ANALYSIS FAÇADE **ENVELOPE** PROCESS METHODOLOGY **OPTIMIZATION** ENERGY PERFORMANCE ORIENTATION PROCESS EFFICENT MEASURABLE EARLY STAGE **RESULTS** SCORECARD RECORDS PROGRESS SOLUTIONS/DECISIONS BENEFITS

CONTENTS

- **01.** Overview
- **02.** Key Ideas
- **03. Implementation**
 - **Project 1**
 - **Project 2**
- 04. Conclusion

PARAMETRICS PERFORMATIVE DESIGN **AUTOMATION ANALYSIS FAÇADE ENVELOPE** PROCESS METHODOLOGY TECHNIQUE SHADING SIMULATION **OPTIMIZATION** ENERGY PERFORMANCE HEAT GAIN ORIENTATION VIEWS ORIENTATION PROCESS EFFICENT AUTOMATED SYSTEM FOR DESIGNING MEASURABLE EARLY STAGE ASSISTANCE/INFORMING STRATEGIES **RESULTS** SCORECARD RECORDS PROGRESS VALIDATES DESIGN SOLUTIONS/DECISIONS BENEFITS EFFICIENCY CORRELATION BETWEEN ENERGY ANALYSIS AND DESIGN ITERATION AND EXPLORATION

CONTENTS

01. Overview

02. Key Ideas

03. Implementation

Project 1

Project 2

04. Conclusion

PARAMETRICS PERFORMATIVE DESIGN **AUTOMATION ANALYSIS FAÇADE** ENVELOPE PROCESS METHODOLOGY TECHNIQUE SHADING SIMULATION **OPTIMIZATION** ENERGY PERFORMANCE HEAT GAIN ORIENTATION VIEWS ORIENTATION PROCESS EFFICENT AUTOMATED SYSTEM FOR DESIGNING MEASURABLE EARLY STAGE ASSISTANCE/INFORMING STRATEGIES **RESULTS** SCORECARD RECORDS PROGRESS VALIDATES DESIGN SOLUTIONS/DECISIONS BENEFITS EFFICIENCY CORRELATION BETWEEN ENERGY ANALYSIS AND DESIGN ITERATION AND EXPLORATION

OVERVIEW

□ **DESIGN COMPUTATION** establishes a foundation for utilizing a number of digital design methods to **PROVIDE SOLUTIONS** and **AUTOMATION** for a design problem.

□ The two project case studies presented here resulted in the **DEVELOPMENT** of a **REVIT ADD-ON** with base functionality towards an automated means of **designing the configuration of a façade**.

PARAMETRICS PERFORMATIVE DESIGN AUTOMATION ANALYSIS FAÇADE ENVELOPE PROCESS METHODOLOGY TECHNIQUE SHADING SIMULATION **OPTIMIZATION** ENERGY PERFORMANCE HEAT GAIN ORIENTATION VIEWS ORIENTATION PROCESS EFFICENT AUTOMATED SYSTEM FOR DESIGNIN MEASURABLE EARLY STAGE ASSISTANCE/INFORMING STRATEGIE RESULTS SCORECARD RECORDS PRO VALIDATES DESIGN SOLUTIONS/DECISIONS BENEFITS EFFICIENCY CORRELATION BETWEEN ENERGY ANALYSIS AND DESIGN ITERATION AND EXPLORATION

AEDAS RESEARCH GROUP

OVERVIEW

PARAMETRICS PERFORMATIVE DESIGN AUTOMATION ANALYSIS FAÇADE ENVELOPE PROCESS METHODOLOGY TECHNIQUE SHADING SIMULATION OPTIMIZATION ENERGY PERFORMANCE HEAT GAIN ORIENTATION VIEWS ORIENTATION PROCESS EFFICENT

AEDAS RESEARCH GROUP

OVERVIEW

PARAMETRICS PERFORMATIVE DESIGN AUTOMATION ANALYSIS FAÇADE ENVELOPE PROCESS METHODOLOGY TECHNIQUE SHADING SIMULATION OPTIMIZATION ENERGY PERFORMANCE HEAT GAIN ORIENTATION VIEWS ORIENTATION PROCESS EFFICENT AUTOMATED SYSTEM FOR DESIGNING MEASURABLE EARLY STAGE ASSISTANCE/INFORMING STRATEGIES RESULTS SCORECARD RECORDS PROGRESS VALIDATES DESIGN

SOLUTIONS/DECISIONS **BENE** Efficiency correlation be Energy analysis and desic Iteration and exploratio

OVERVIEW

□ The façade design analysis here is inspired by changing façade panel configuration based on **ANALYTICAL DESIGN IMAGE** (designer sketch for wall panel types, solar radiation image, specific pattern, etc.).

AUTOMATION ANALYSIS FACADE **ENVELOPE** PROCESS METHODOLOGY TECHNIQUE SHADING SIMULATION **OPTIMIZATION** ENERGY PERFORMANCE HEAT GAIN ORIENTATION VIEWS ORIENTATION PROCESS EFFICENT AUTOMATED SYSTEM FOR DESIGNING MEASURABLE EARLY STAGE ASSISTANCE/INFORMING STRATEGIES **RESULTS** SCORECARD RECORDS PROGRESS VALIDATES DESIGN SOLUTIONS/DECISIONS BENEFITS EFFICIENCY CORRELATION BETWEEN ENERGY ANALYSIS AND DESIGN ITERATION AND EXPLORATION

CONTENTS

01. Overview

02. Key Ideas

03. Implementation

Project 1

Project 2

04. Conclusion

AUTOMATION ANALYSIS FACADE **ENVELOPE** PROCESS METHODOLOGY **TECHNIQUE SHADING SIMULATION OPTIMIZATION** ENERGY PERFORMANCE HEAT GAIN ORIENTATION VIEWS ORIENTATION PROCESS EFFICENT AUTOMATED SYSTEM FOR DESIGNING MEASURABLE EARLY STAGE ASSISTANCE/INFORMING STRATEGIES **RESULTS** SCORECARD RECORDS PROGRESS VALIDATES DESIGN SOLUTIONS/DECISIONS BENEFITS EFFICIENCY CORRELATION BETWEEN ENERGY ANALYSIS AND DESIGN ITERATION AND EXPLORATION

KEY IDEAS

"...An approach to applying evidence to design process that neither turns designers into scientists nor requires time' Chong et. al. (2011), Design Informed: Driving

Innovation with Evidence-Based Design

PARAMETRICS PERFORMATIVE DESIGN AUTOMATION ANALYSIS FAÇADE ENVELOPE PROCESS METHODOLOGY TECHNIQUE SHADING SIMULATION OPTIMIZATION ENERGY PERFORMANCE

HEAT GAIN ORIEN ORIENTATION PRO AUTOMATED SYST MEASURABLE EAR ASSISTANCE/INFO RESULTS SCORECA VALIDATES DESIG SOLUTIONS/DECIS EFFICIENCY CORR ENERGY ANALYSIS ITERATION AND E

Façade Sunshade Analysis ACADIA2011 Workshop

KEY IDEAS

The images below represent a performance optimization technique where **SOLAR RADIATION DATA** is visualized as an image, and then utilized to size the shading devices in a building façade.

Façade Solar Exposure Revit BIM Massing Model EFFAT UNIVERSITY - ARCHITECTURE DEPARTMENT PARAMETRICS PERFORMATIVE DESIGN AUTOMATION ANALYSIS FAÇADE ENVELOPE PROCESS METHODOLOGY TECHNIQUE SHADING SIMULATION OPTIMIZATION ENERGY PERFORMANCE HEAT GAIN ORIENTATION VIEWS ORIENTATION PROCESS EFFICENT AUTOMATED SYSTEM FOR DESIGNING MEASURABLE EARLY STAGE

Vibration Testing

KEY IDEAS

□ In fact, other industries have their **DESIGN PROCESSES REVOLUTIONIZED** by seeking **GOAL-ORIENTED SCHEMES** such as: industrial product design, art, furniture design, ship building, urban planning, car design, aerospace engineering, etc.

□ The power of **PARAMETRIC DESIGN** computation can be harnessed to **EXPLORE POSSIBLE DESIGN SOLUTIONS** that yield interesting ideas which might not have been found through the traditional manual methodologies. This is simply looking to answer different `**What if Scenarios**'.

MONOLITHIC TOWER (LOAD BEARING WALLS)

DECREASED THICKNESS (3" CONCRETE)

Parametric Revit Panel Family Set Up

LIVE DEMO :: Direct Connection Between Image Data and Revit Curtain Wall Panels

R.	De 🖥 🕥 · 分	• 🖧 • 🗮 • 🖧 •	A ⊗ • ♀ ₺ 🛃 🔂 •	→ Autodesi	Revit Architecture 20	11 - DEMO MODE - [2 🕨 Type a key	word or phrase	<u>89</u> - 84
A	Home Insert	Annotate Structure	Massing & Site Collaborate	View Mana	ge Add-Ins Moo	dify 🖸 🕶		
	Materials	Project Information	n 📳 Shared Parameters	0-20	E Location	Add to Set	원 Manage Links	
Modifu	🥵 Object Styles	Project Parameters	🖓 Transfer Project Standards	Additional	Coordinates •	Pick to Edit	Manage Images	Phases
woony	🕅 Snaps	Project Units	🕎 Purge Unused	Settings	Position •	Options Main Model	Decal Types	- Demoi
Select		Se	ettings		Project Location	Design Options	Manage Project	Phasing

LIVE DEMO :: Direct Connection Between Image Data and Revit Curtain Wall Panels

	<u> @, </u> , , , , , , , , , , , , , , , , , ,		- 6, 6+	🚽 🛛 Autodesk Rev	it Architect	ure 2011 - D	EMO MODE - [2	•• Type a keyword or j	ohrase	AA - S S
iConViz (c) V2.1 [2011]	X	sing & Site	Collaborate	View Manage	Add-Ins	Modify	• •			
Façade Location Data	Select Image Path	, ~ @ 🗗	Drafting View	[^{[7}]] Duplicate View	· • 0	P Sheet	Title Block	Aatchline		Re
Enter location data, panel properties, and specify sunshade type to optimize.	C:\Users\Zaki\Desktop\ZakiStuff\iconviz \vincent\1x27ViewImportance.jpg To Image		Elevation •	📰 Legends 🔹	-41	D View	85 ^A Revisions	°⊕ View Reference	4	1 🔀 🕞 Ca
Panel Length	Image Pixles Width (U) 1 Image Pixles Height (V) 27	n Callout	Plan Views 🔹	E Schedules •	Box		🔛 Guide Grid	📳 Viewports 🔹	Windows *	Hidden 🗄 Til
			Create				Sheet Comp	osition		Window
	10% Zaki-TowerModuleContainer:Top ▼									
	20% Zaki-TowerModuleContainer:Midd									
	40% Zaki-TowerModuleContainer:Top -									
Panel Height	Zaki-TowerModuleContainer:Bott Zaki-TowerModuleContainer:Mid:									
15 f 0 in 85 HSA	70% Arki-TowerModuleContainer:Midc ▼									
No. Von	80% Zaki TowerModuleContainer:Full ▼									
Include/Exclude Sunshade Optimization YES ND										
Parameter X1 Control	Parameter X3 Control									
Specify Max. Length Range Per Gradiant Image Per Gradiant Image	Specify Max. Angle Range Per Gradiant Image						THE REAL			
10 Inch COMPUTE 10 Inch COMPUTE	10 Deg. COMPUTE									
				Ontim	ized	Su	ncha	de Dent	h ha	sed
				opum	IZUU	l Du	11511a	uc Dep		iscu
			on:		ิล	nd	HSA	Wid	th.	and
					.	114		, , , , , , , , , , , , , , , , , , ,		
			He	ight of	pai	nel.				
			UU	8			noder	*		
					_					

LIVE DEMO :: Direct Connection Between Image Data and Revit Curtain Wall Panels

	à- A- A- A- A- A		🕂 🗸 🥃 🛛 Autodesk Re	vit Architecture	e 2011 - DEMO MODE - [2 Type a keyword or i	ohrase AA	- Q Q
iConViz (c) V2.1 [2011]	×		Non Margar	Add Inc		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00	
Optimize Envelope		g & Site Collabora	e view ivianage	Add-Ins I				
Façade Location Data	Select Image Path	🛛 🖯 😁 🖨 Drafting '	liew 📳 Duplicate Vie	w • 🚠 🖞	🎦 Sheet 🛛 📄 Title Bloc	k [🗋 Matchline		📑 Rep
sunshade type to optimize.	C:\Users\Zaki\Desktop\ZakiStuff\iconviz Browse \vincent\1x27ViewImportance.jpg To Image	Claustion	r 📼 Legende r	°ų j	Ninu PA Pavisions	· D View Peterance	4L] 4L💥	
Panel Length	Image Pixles Width (U) 1 Image Pixles Height (V) 27	Callout	Elegends *	Scope		, [6] view Reference	Switch Close	
4 f 🖸 in 💛 👸	A size Density Continue	S Plan Viev	s 🔹 📰 Schedules 🔹	Box	🗰 Guide Gr	id 🕮 Viewports 🔹	Windows * Hidde	n 🗄 Tile
		Creat	2		Sheet Com	position		Windows
	10% Zaki-TowerModuleContainer:Top ▼							
	20% Zaki-TowerModuleContainer:Midd -							
	30% Zaki-TowerModuleContainer:Full -							
	20% Zaki-TowerModuleContainer:Top ▼							
Panel Height	50 X Zaki-TowerModuleContainer:Bottr -							
15 f 0 m 85 HSA	CO% Zak TowerModuleContainer.Midd ▼							
45 VSA	Zaki-TowerModuleContainer:Full							
1 7	90% Zaki-TowerModuleContainer:Midd -							
Include/Exclude Sunshade Optimization YES NO	СОМРИТЕ							
Deventer V1 Carter								
Specify Max. Length Specify Max. Width Range	Specify Max. Angle Pange							10
Range Per Gradiant Image Per Gradiant Image 10 Instruction COMPLITE 10 Instruction	Per Gradiant Image							
								1 1
		╺┥┥╽						
				84 - CS - 184				
		-453		·	J C			4
		ويعالمه المرا أنقرا أشرا	U Opu	imize	a Su	nsnade	rota	uon
			_		• •	•	_	
			angle 1	to me	avimize	interio	r viewo	s tn
			angie					5 10
			aantain		tomion	attraat	0.100	$(\circ \circ$
			certain	ex ex	lerior	allraci	ULZ ((e.g.
					•			U
			waterfi	ront v	view).			

PARAMETRICS PERFORMATIVE DESIGN AUTOMATION ANALYSIS FAÇADE **ENVELOPE** PROCESS METHODOLOGY **OPTIMIZATION** ENERGY PERFORMANCE ORIENTATION PROCESS EFFICENT MEASURABLE EARLY STAGE **RESULTS** SCORECARD RECORDS PROGRESS SOLUTIONS/DECISIONS BENEFITS

CONTENTS

01. Overview

02. Key Ideas

03. Implementation

Project 1

Project 2

04. Conclusion

Project 1 - Socio-Design Competition (1st Prize)

How Can a School Inspire Socially-Aware Design

Project Name: NEST 07 TER London **Project Location:** London, UK World Project Type: Higher Education – Social Design **Perkins + Will** Team: ran -John Poelker. [Satellite - Shannon Goodman. - Zaki Mallasi. - Mike Hodge. - Sumegha Shah.

THE DESIGN COMPUTATION ANALYSIS WORKFLOW

STUDY ENVELOPE AND DESIGN ATTRACTORS

The diagram to the right shows the School competition site plan in London. The table below lists the main attractors which define the development of the **TOWER SKIN** The **FOUR DESIGN ATTRACTORS** chosen have crucial influence on the Tower enclosure design. They are:

Design	Attractors	1
Attractor Name	Level of Importance	
	(0-100% range)	
Panel type selection		10%
2 Floor plan layout		20%
(3) View priority to Outside		30%
4 Solar exposure level		40%

These attractors act as the starting point for a computational design procedure and for designing Revit object parameters that drive the tower components. Each attractor has a '**LEVEL OF IMPORTANCE**' value which influence the values of parameters and hence the Tower envelope.

THE DESIGN COMPUTATION ANALYSIS WORKFLOW

STUDY ENVELOPE AND DESIGN ATTRACTORS (PROCESS THINKING)

THE DESIGN COMPUTATION ANALYSIS WORKFLOW

CURTAIN WALL PANEL OPTIMIZATION

Project 2 – Effat University New Library, Jeddah, Saudi Arabia

North Elevation – Skin Option A

North Elevation – Skin Option B

Project 2 – Effat University New Library, Jeddah, Saudi Arabia

North East Corner View of Final Design Option

PARAMETRICS PERFORMATIVE DESIGN AUTOMATION ANALYSIS FACADE/ENVELOPE PROCESS METHODOLOGY TECHNIQUE SHADING SIMULATION PANEL SELECTION **OPTIMIZATION** ENERGY PERFORMANCE HEAT GAIN ORIENTATION VIEWS ORIENTATION PROCESS EFFICENT AUTOMATED SYSTEM FOR DESIGNING MEASURABLE EARLY STAGE ASSISTANCE/INFORMING STRATEGIES **RESULTS** SCORECARD RECORDS PROGRESS VALIDATES DESIGN SOLUTIONS/DECISIONS BENEFITS EFFICIENCY CORRELATION BETWEEN DATA ANALYSIS AND DESIGN ITERATION AND EXPLORATION

CONTENTS

01. Overview

02. Key Ideas

03. Implementation

Project 1

Project 2

04. Conclusion

Develop methodology from here and direction for additional exploration in design studio curriculum.

□ Further research and development of more generic parametric design tools for: design analysis, process automation solutions, and higher level parametric functionality/utility.

□ Different advantages can be observed from applying performance-based façade design.

□ Consider the 'global view' benefits of BIM models to efficiently update and speed design changes documentations.

□ Computational Design mechanism offers an interesting path towards forming concepts into contemporary architectural discourse.

□ Parametric design offers some advantages over traditional modeling methods, since it allows adaptation of an object through the use of rules and object's properties.

If we can support our design thinking process with analytical data, some design ideas would evolve and will more likely produce designs we've never though about.

Family	Types	Count	Opening Angle	Opening Height	Height	Width	Area	Unit Cost	Total Cost
Panel5	А	120	-90.00°	8' - 0"	10' - 0"	5' - 0"	50 SF	2000	240000
Panel5	в	20	-70.00°	8' - 0''	10' - 0"	6' - 0"	60 SF	3000	60000
Panel5	С	17	-70.00°	8' - 0''	10' - 0"	7' - 0 23/32"	71 SF	3000	51000
Panel5	D	15	-70.00°	8' - 0"	10' - 0"	8' - 0"	80 SF	3000	45000
Panel5	E	13	-70.00°	8' - 0"	10' - 0"	9' - 2 25/32"	92 SF	3000	39000
Panel5	F	12	-70.00°	8' - 0"	10' - 0"	10' - 0"	100 SF	3000	36000
Panel5	G	11	-70.00°	8' - 0"	10' - 0"	10' - 10 29/32"	109 SF	3000	33000
Panel5	н	10	-70.00°	8' - 0"	10' - 0"	12' - 0"	120 SF	3000	30000
Panel5	1	18	-70.00°	8' - 0"	10' - 0"	13' - 4"	133 SF	3000	54000
Panel5	J	8	-70.00°	8' - 0''	10' - 0"	15' - 0"	150 SF	3000	24000
Panel5	к	8	-50.00°	8' - 0"	10' - 0"	15' - 0"	150 SF	6000	48000
Panel5	L	14	-50.00°	8' - 0''	10' - 0"	17' - 1 23/32"	171 SF	6000	84000
Panel5	м	18	-50.00°	8' - 0''	10' - 0"	20' - 0"	200 SF	6000	108000
Panel5	N	25	-50.00°	8' - 0"	10' - 0"	24' - 0"	240 SF	6000	150000
Panel5	0	8	-50.00°	8' - 0"	10' - 0"	30' - 0"	300 SF	6000	48000
Panel5	Р	4	-45.00°	8' - 0''	10' - 0"	30' - 0"	300 SF	7000	28000
Grand total	321								1078000

Work Credits: Vincent Poon

Work Credits: Vincent Poon

Work Credits: LMN Tech Studio (http://lmnts.lmnarchitects.com)

Dr. Zaki Mallasi Email: zaki@iconviz.com

WWW.ICONVIZ.COM